15 research outputs found

    Adjustment of the electric current in pulsar magnetospheres and origin of subpulse modulation

    Full text link
    The subpulse modulation of pulsar radio emission goes to prove that the plasma flow in the open field line tube breaks into isolated narrow streams. I propose a model which attributes formation of streams to the process of the electric current adjustment in the magnetosphere. A mismatch between the magnetospheric current distribution and the current injected by the polar cap accelerator gives rise to reverse plasma flows in the magnetosphere. The reverse flow shields the electric field in the polar gap and thus shuts up the plasma production process. I assume that a circulating system of streams is formed such that the upward streams are produced in narrow gaps separated by downward streams. The electric drift is small in this model because the potential drop in narrow gaps is small. The gaps have to drift because by the time a downward stream reaches the star surface and shields the electric field, the corresponding gap has to shift. The transverse size of the streams is determined by the condition that the potential drop in the gaps is sufficient for the pair production. This yields the radius of the stream roughly 10% of the polar cap radius, which makes it possible to fit in the observed morphological features such as the "carousel" with 10-20 subbeams and the system of the core - two nested cone beams.Comment: 8 pages, 1 figur

    High-Energy Cosmology: gamma rays and neutrinos from beyond the galaxy

    Full text link
    Our knowledge of the high-energy universe is undergoing a period of rapid change as new astronomical detectors of high-energy radiation start to operate at their design sensitivities. Now is a boomtime for high-energy astrophysics, with new discoveries from Swift and HESS, results from MAGIC and VERITAS starting to be reported, the upcoming launches of the gamma-ray space telescopes GLAST and AGILE, and anticipated data releases from IceCube and Auger. A formalism for calculating statistical properties of cosmological gamma-ray sources is presented. Application is made to model calculations of the statistical distributions of gamma-ray and neutrino emission from (i) beamed sources, specifically, long-duration GRBs, blazars, and extagalactic microquasars, and (ii) unbeamed sources, including normal galaxies, starburst galaxies and clusters. Expressions for the integrated intensities of faint beamed and unbeamed high-energy radiation sources are also derived. A toy model for the background intensity of radiation from dark-matter annihilation taking place in the early universe is constructed. Estimates for the gamma-ray fluxes of local group galaxies, starburst, and infrared luminous galaxies are briefly reviewed. Because the brightest extragalactic gamma-ray sources are flaring sources, and these are the best targets for sources of PeV -- EeV neutrinos and ultra-high energy cosmic rays, rapidly slewing all-sky telescopes like MAGIC and an all-sky gamma-ray observatory beyond Milagro will be crucial for optimal science return in the multi-messenger age.Comment: 10 pages, 3 figs, accepted for publication in the Barcelona Conference on Multimessenger Astronomy; corrected eq. 27, revised Fig. 3, added 2 ref

    Demystifying an unidentified EGRET source by VHE gamma-ray observations

    Get PDF
    In a novel approach in observational high-energy gamma-ray astronomy, observations carried out by imaging atmospheric Cherenkov telescopes provide necessary templates to pinpoint the nature of intriguing, yet unidentified EGRET gamma-ray sources. Using GeV-photons detected by CGRO EGRET and taking advantage of high spatial resolution images from H.E.S.S. observations, we were able to shed new light on the EGRET observed gamma-ray emission in the Kookaburra complex, whose previous coverage in the literature is somewhat contradictory. 3EGJ1420-6038 very likely accounts for two GeV gamma-ray sources (E>1 GeV), both in positional coincidence with the recently reported pulsar wind nebulae (PWN) by HESS in the Kookaburra/Rabbit complex. PWN associations at VHE energies, supported by accumulating evidence from observations in the radio and X-ray band, are indicative for the PSR/plerionic origin of spatially coincident, but still unidentified Galactic gamma-ray sources from EGRET. This not only supports the already suggested connection between variable, but unidentified low-latitude gamma-ray sources with pulsar wind nebulae (3EGJ1420-6038 has been suggested as PWN candidate previoulsy), it also documents the ability of resolving apparently confused EGRET sources by connecting the GeV emission as measured from a large-aperture space-based gamma-ray instrument with narrow field-of-view but superior spatial resolution observations by ground-based atmospheric Cherenkov telescopes, a very promising identification technique for achieving convincing individual source identifications in the era of GLAST-LAT.Comment: 4 pages, 5 figures, Accepted for publication in Astrophysics and Space Science, Proc. of "The Multi-Messenger Approach to High-Energy Gamma-ray Sources (Third Workshop on the Nature of Unidentified High-Energy Sources)", Barcelona, July 4-7, 2006, one typo correcte

    States and transitions in black-hole binaries

    Full text link
    With the availability of the large database of black-hole transients from the Rossi X-Ray Timing Explorer, the observed phenomenology has become very complex. The original classification of the properties of these systems in a series of static states sorted by mass accretion rate proved not to be able to encompass the new picture. I outline here a summary of the current situation and show that a coherent picture emerges when simple properties such as X-ray spectral hardness and fractional variability are considered. In particular, fast transition in the properties of the fast time variability appear to be crucial to describe the evolution of black-hole transients. Based on this picture, I present a state-classification which takes into account the observed transitions. I show that, in addition to transients systems, other black-hole binaries and Active Galactic Nuclei can be interpreted within this framework. The association between these states and the physics of the accretion flow around black holes will be possible only through modeling of the full time evolution of galactic transient systems.Comment: 30 pages, 11 figures, To appear in Belloni, T. (ed.): The Jet Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009

    Accelerated particles from shocks formed in merging clusters of galaxies

    No full text
    Subcluster interactions within clusters of galaxies produce shocks that accelerate nonthermal particles. We treat Fermi acceleration of nonthermal electrons and protons by injecting power-law distributions of particles during the merger event, subject to constraints on maximum particle energies. The broadband nonthermal spectrum emitted by accelerated electrons and protons is calculated during and following the subcluster interaction for a standard parameter set. The intensity of Îł-ray emission from primary and secondary processes is calculated and discussed in light of detection capabilities at radio and Îł-ray energies

    IDENTIFYING THE MYSTERIOUS EGRET SOURCES: SIGNATURES OF POLAR CAP PULSAR MODELS

    Get PDF
    The advent of the next generation of gamma-ray experiments, led by GLAST, AGILE, INTEGRAL and a host of atmospheric ÄŚerenkov telescopes coming on line in the next few years, will enable ground-breaking discoveries relating to the presently enigmatic set of EGRET/CGRO UID galactic sources that have yet to find definitive identifications. Pulsars are principal candidates for such sources, and many are expected to be detected by GLAST, some that are radio-selected, like most of the present EGRET/Comptel pulsars, and perhaps even more that are detected via independent pulsation searches. At this juncture, it is salient to outline the principal predictions of pulsar models that might aid identification of gamma-ray sources, and moreover propel subsequent interpretation of their properties. This review summarizes relevant characteristics of the polar cap model, emphasizing where possible distinctions from the competing outer gap model. Foremost among these considerations are the hard X-ray to gamma-ray spectral shape, high energy cutoffs and pulse profiles, and how these characteristics generally depend on pulsar period and period derivative, as well as observational viewing angle. The polar cap model exhibits definitive signatures that will be readily tested by the detections of GLAST and other experiments, thereby establishing cogent observational diagnostics. The paper focuses on different classes of pulsars that might define agendas and parameter regimes for blind gamma-ray pulsation searches; examples include the highly-magnetized ones that are currently quite topical in astrophysics. 1 2 1
    corecore